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The passage to approximate one-dimensional equations from the three-dimen- 

sional equations of elasticity is possible in the theory of rods exactly as in 

the theories of plates and shells if the displacements vary much more slowly 
in the longitudinal than in the transverse direction, i. e. , in the case of long- 
wave vibrations in the longitudinal direction, In the low frequency case in 
dynamics, this condition results in the hypothesis of plane sections, Gener- 

ally speaking, the hypothesis of plane sections is not true for high frequenc- 
ies: the displacements can be rapidly oscillating functions of the transverse 

coordinates. The classical equations of the theory of rods, based on the hy- 

pothesis of plane sections, describe low-frequency vibrations. By using a 
variational asymptotic method below, displacement distribution over the 

section of a circular cylinder are found, and one-dim~~onal equations are 

derived in the case of free high-frequency long-wave vibrations of rods. 
These distributions have been obtained in [l] by asymptotic integration of 

the three-dimensional equations, however, the one-dimensional equations 
of high-frequency vibrations were not constructed there. 

Fist-approxima~on equations in the geome~ca~y nonlinear theory of anisotropic, 
inhomogeneous rods have been derived earlier [2], as have been the refined equations 
of rod bending vibrations [3] and the plate free high-frequency vibrations equations 

c41. 

1. Let us consider the free vibrations of a rectilinear elastic rod of length 21 and 
constant cross section Q I Let us select the axea of the Cartesian coordinate system 

5, I(” (the Greek superscripts take on the values 1,2) so that the rod axis in the under- 
formed state would coincide with the 2 -axis and the axes xa would lie in the cross- 

sectional plane. The center of gravity is set at the origin, We denote the projections 
of the displacement vector on the x, ti axes by w, W, and the rod cross-sectional 

diameter by 2h (h(( I). We consider the rod ends to be rigidly fixed 

w = w, =o, x=*1* (1.1) 

The equations of free rod vibrations are extremals of the Lagrange functional [s] 

I= at nav, h=U- s s -i&p (Wyf + Wa, tWl”t) 
il v 

(1.2) 

2u = h {W,aa)’ + 2AWTaa W,x + (h + 2fL) W,x’ + 2ktW{a,p) Wcuy@f + 

P tW,a + Wa,x)(Wpa + W,xa) 
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Here v is the volume occupied by the rod, p is the density, U the elastic energy, 
A, P the Lam& parameters. The comma in the subscripts denotes differentiation, 

and the parentheses denote the symmetrization operation. 

2. We obtain the equations for the high-frequency vibrations by a variational asy- 
mptotic method [2]. 

Let us retain the asymptotically principal terms in h in the functional (1.2) 

I=QidtjXds 
(2. I) 

t1 -J 

CA = (h(lu,~~)~ + 2/.M4~,f#l)o~~) + p.W,aWsa - P (W.12 + Wa,tW,P)> 

<A)=+IAdQ 
n 

The extremals of the functional (2.1) agree with the extremals of the functional 

11 

s 
i&-It 

t1 

Varying this latter, we obtain the equations 

(2.2) 

kW,,%, + 2f.lW<a,pjVa = 0 on r 

PAW - pw,tt = 0, adaY =o on r 

Here r is the corss-sectional outline, Y” are components of the external normal V 

to the contour I’, and A is the Laplace operator in the variable fl. 

Equations (2.2) govern two series of vibrations FL and F;i (the symbol 1 is 
used if the transverse displacement W, is very much greater than the longitudinal W, 

and the symbol II otherwise). 
Let us assume that w, w, depend on time according to the harmonic law 

w = w”eiut, wa = WaOeiot 

We shall henceforth omit the superscript for W" and WCZ”. The solutions of (2.2) 

have the form 
F,: w = 0, wa = u/a (zy, 01) (2.3) 

F, : w = $G (z”, o II ),. w, = o 

It is convenient to write the expressions for fa and G for a circular rod of rad- 

ius h in the polar coordinates r, 0 in the plane of the rod cross section 

fa = h (fr (F, 0) $ f fe (FT 0) ‘$) 
f,(~, f3) = [AJ~‘(QF) + +Jn (fh)]cod 

(2.4) 

fe (F, 0) = - [A +J,,(aF) + J,' (PF)] Sin no 
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A = 
2fi Wn W4 - Jn @W 

2hJ,’ (ah) + (hafir - 2n”) J, (ah) (2.5) 

G=J,,(C)r)cosn0, a= c, /3=g, Cl = v- 
h+2CL -, CZI- r 

P P 

Here n is an integer, J, is the Bessel function of the first kind of order n ( the 
prime denotes the derivative with respect to r ) and &S is the Levi-Civita tensor. 

Therefore, fa - 1, G - 1. 
The quantities 24, li) are functions of 5, harmonic in time with the frequency 

0 , which are determined in each series from the appropriate dispersion equation 

F,: WJ,’ (ah) + (B2h2 - 2n2) J, (ah)l[2hJ,,’ (fib) + (2. ‘3 

( B2h2 - 2n2) J,, (ph)] = 
4n2 LhJ,,’ (ah) - J,, (ah)l[hJ,’ (ph) - J, (ph)l 

F,,: J,’ (/3h) = 0 

which are obtained from the condition of no stresses on the side surface of the rod. 
In each series there is an infinite number of kinds of vibrations (branches) corres- 

ponding to different values of o , the roots of the appropriate dispersion equation for 
each n>O. 

For n = 0 the dispersion equation (2.6) of the series F, reduces to the prod- 
uct of two factors. One yields the dispersion equation for the tension- compression vib- 

rations over the thickness: hence the radial component of the displacement f, is 
independent of 8 and fa = 0. The second factor yields the dispersion equation 
for torsional waves characterized by the presence of just one displacement component 

fa independent of 8. 
For n = 0 the series F ,, yields longitudinal axisymmetric vibrations. The 

corresponding dispersion equation has the form 

Jl (ph) = 0 

For n > 1 we have a family of bending waves which we shall examine later. 
In conformity with conditions ( 1. l), we consider that the functions are 

u=$=O, x=&-l (2.7) 

Without limiting the generality, we also consider that u - 9 - 1. 

3. Let us first examine the series F,. Considering u a given function of k 
we find w ( W = 0 in a fiat approximation). Retaining only the principal terms 
containing w in (1.2) and the principal cross terms, we arrive at the functional 

2 

I, =+ S (2huf,~w,x + p @,a -t- fc&,,) (w,a + f%x) + Paw”) dx 
-1 

whose variation will yield an equation and boundary condition for w 

(h + p) qrf,aa + CLAW + ~0% = 0 (3.1) 

aw I av = -U,,jWa on r 

The solution of (3.1) has the form 



362 S. S. Kvadmina 

w = u,xg (“z”) 
For a circular rod (A is given by the first formula in (2.5)) 

Therefore, g is of othe order of h. 
The next correction to W, is found analogously: w is determined, and W, is 

sought in the form w, = ufG + w,‘, and the principal terms in W,’ in the princi- 

pal cross terms are kept in the Lagrangean. 

Because of the redefinition of u the constraint 

(warp> = 0 
can be imposed on we’. 

We arrive at equations governing the functions w,’ 

WC%’ - U,da 

(3.2) 

(3.3) 

h +G+2&- g,,, 0) + p2ga = Ma - (A -k I4 g*, 

hg,yyVu + 2~g(a,@)V’ = -43% on f 

as a result of varying the functional under the condition (3.2). 
Here x is a Lagrange multiplier corresponding to the constraint (3.2). It is seen 

from (3,3) that $a - ha. The explicit form of the solutions of these equations is 
not needed to construct the one-dimensional equations. 

4. Formulas for the displacements of the second series are obtained by the same 
means, Considering q a given function of 5, we find WCZ ( w, = 0 in a first 
approximation). Retaining only principal terms containing w, and the principal cross 
terms in (1.2), we arrive at the functional 

2p$G,uw,z + P”‘Wafl) dJ: 

whose variation yields an equation and boundary conditions for Wa 

wa = +ccGa (z’) 

h j$i,‘,T + 211$ G(a, p) + pe2Ga = - (A + ~1 G.a 

hG,y’~, -‘r Zp.G@,eJv’ = --hGva on I? 

It follows from (4. I) that Ga - h. 
The so&t&m for a circular rod has the form 

G, = (~,a + &+Y,, 

(4. 1) 

cp = [+Jn @4 + MJ,, (W] cm n8 
Y == NJ, (fir) sin n0 
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She constants M and N are determined from the boundary conditions on the side 

surface r 
M = 25, (Oh) 2rP - ( a2 - fWGj (2)X2 - fP@) 

B2 J, (ah) [(2n2 - ~FVZ*)~ - 4nz] + 2bah2J,’ (U/L) (4.2) 

2n ~WJ, (ah) + 2h (nl - ~shz - 1) J,’ (ah) 
N = 8” J, (alt) [(2/z* - @W)a - 4n2] + 2bahbJn’ (ah) 

Furthermore, the correction to w is sought: it is assumed W = $G + w’, where 
9, G are considered known, and w’ is found by variation of the functional in which 

the principal terms in w’ and tlx? principal cross terms are retained. Because of a 

redefinition of $J the constraint 

(Gw’) = 0 (4.3) 

can be imposed on w’. 
We arrive at equations governing the function W’ 

w’ = ~&.c~ (PC”) 

AH + pdH = x”G + (1 - 5) G:: 

dH / dv = - Gava on I’ 

(4.4) 

as a result of variating the functional under the condition (4.3). 

Here x0 is a Lagrange multiplier, It follows from (4.4) that H _ hs. The expli- 
cit form of the function H is not required for the construction of one-dimensional 

equations. 

5. Now, let us assume that u, $ are arbitrary functions of z and t. Evaluat- 
ing <A) in (1.2) for each branch and keeping components of the order of hea and 
1, we obtain 

F,: 2 (A) = (Au2 (f,aa)2 + 2 3Luu,xJ,aag + 2 p.~~f~~,~, f(am + t5* l) 
W,r” (fa + g,a) (f” + g’“) - 0 (Uyxtg” + U,t2fafa) > 

F 11 : 2 (A> = (/N2G,aGla + $),x2 [A (G + G,aa)’ + 
2y (Ga + Gta,BJ G(a,fi) - G,, G’a)l - p ($LGaGa + $,taGa)) 

The average Lagrangean for the lowest branch of FL corresponding to wI = 0 is 
not written down here since this branch is described by the classical Bernoulli -Euler 
equation. 

Let us note that the functions g, and H did not enter into the average Lagrang- 
eans because of the constraints (3.2) and (4.3). 

6. The vibrations corresponding to any two different branches with an error no 
greater than the magnitude of the terms kept in the Lagrangeans are orthogonal in the 
elastic and kinetic energies 

i (Oi’Eij) dJr = 0, i ;W,liwi, t> dx = 0 
-1 1 ‘2 -1 1 2 

(6. 1) 

Here pi, oil, Eij are the displacements, stresses and strains. the indices 1 and 2 
denote their values for different branches, and the indices i, j run through the values 

0, I, 2. 
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Equations (6.1) are verified by direct substitution. 
conditions which the functions f,, R, & 

The equations and boundary 
and G. H, G, satisfy, as well as the 

boundary conditions (2.7) at the rod ends are used here. 

The orthogonality in the energy means that the vibrations corresponding to differ- 
ent branches are independent. 

7. We obtain elation of the series F‘, and F ij of free high-frequency rod vib- 
rations by varying the functionals (5.1). These equations have the form (CO,_ and 
o 11 are the roots of the appropriate dispersion equations (2.6)): 

pal_ (@L2U + Ytt) = b_Lu,xc + PC_LU,Lxxtt (7.1) 

pa I[ (0 I\ “Ir, + %,*t) = b II %x + PC II *,srtt 

a, = B e&p>, bJ_ = pal + Pq_QL - @ + i-4 d, + Fe, 

For a circular rod of radius h 

rluJ_ = A2 {hJ, (ah) J,’ (ah) + ‘iz (a2h* - 6) J,,” (ah) + 
I,‘, h2J ‘* (4) + 2 AnJ, (ah) J,, (Bh) + hJn (Oh) J,’ W) -I 
f/% cozy - a2) Jna (f%) + ‘ia htJa’* (j3h> 

n-$_ = A2 I(c.?h2 - n”) J,” (cth) + h2Js” (ah)1 f 2cs2 + 

B2 [(p2h2 - n2) Jn2 (f&) + haJ,” (oh)1 ! 2f9’ - 

2ABh [J, (ah) J,’ @h) - J, @h) J,’ (ah)!/ (aa - P”) 

3-c-%&_ = ABa2h [J, (ah) J,’ (flh) - J, @h) J,’ (ah)1 I (a” - 
f3”) - Y2 A2 [(aah - n”) J,” (ah) + h2J~*(~h)l 

n-Q!, = h [AJ, (ah) - BJ, (f3h)l IAJ,’ (ah) + n / h J, (@h)J 

B= J,‘;yL) x 

4hJ,’ (ah) f,’ (f3h) - 2J, (@h) J,’ (CA) i- h--l (Ph2 - 2n9 JTl (ah) Jn I@) 
2hf,’ (c& ) + @*he - 2n2) J, (ah) 

x-% ,, = & [ffiah2 - n”) Jn2 (@) -+ h2J,12 (Bh)l 

n-ldr = Ma+ [J, (13h) J,’ (ah) - J, (ah) J,’ @)I - 

-&- r@“ha - riL) Jra2 (84 -I- fiaJn” W)l 

rc-‘e II= J, (W) [g J,’ (fb) + MM,’ (ah) + NnJn (Bhfl 

x-k ,, = (IV2 + p-4) (hJ,’ @h) J, (flh) + 92 [(P2hz - h2) J,” (I-W + 
h2J,‘” (fk)]) + Ma {hJ: (ah) J, (ah) + ‘la f(a”h’ - n2) J,” (ah) + 
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h2J,‘* (uhf)) + Z~~~~-lJ* (ah) Jn (@a) + 2~~-l~-2J~2 (fib) + 

The quantity A is defmed by the first formula in (2.5), while M and N are defined 

by (4.2). 
The approximation constructed in the paper has an error of order h. In conform- 

ity with this, the boundary conditions (1.1) are satisfied to the accuracy of terms of 

order h (since w = u,%g N h). Therefore, the residual in the boundary conditions 

induces an error of the same order of smallness in the solution as does replacement of 
the equations of three-dimensional theory of elasticity by the approximate one-dim- 

ensional equations. 

8, As an illustration of the application of (7.9, let us consider the problem of 
the high-frequency free vibrations of a rod of length 21, clamped rigidly at the ends. 
The solution of (7.1) under the boundary conditions 

u (--1) = u (I) = II, (-2) = * (1) = 0 

is constructed by separation of variables. Consequently, we obtain 

11, = (Am cos ymt + B, sin y,t) sin h,x 

pao4 + bh,s mn 
Ym= p (a + ch,s) ’ ‘tn = 1 

(8.1) 

where m is an integer, o is a root of the dispersion equation (2.61, and a, b, c are 
coefficients in the first equation in (7.1). 

Thesolution hasthesame formforthe functions %I but the coefficients a, b, c and 
the frequency o are evaluated by formulas corresponding to the series F ,, . 

The solution obtained has the following meaning. High frequency longwave harm- 
onic vibrations with frequencies o1 and o ,) are possible in an infinite rod, the dis- 
placements are hence constant along the rod but vary as the functions d @% fa fs”! 

or G Cza), G, (~6) in the transverse coordinate. If the rod is clamped at the ends, 

then a slowly varying field along the axis is superposed on the constant displacement 
field along the longitudinal coordinate. The natural frequencies vary and will differ 
from 0. The second formula in (8.1) again yields the correction to o. Hence, 

although the formal solution (8.1) is valid for any integer m, the values of m should 
be limited in such a way that YT~ evaluated by the second formula in (8, I) would not 
be too different from o. 
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